《矩阵论》2025 Autumn

为人工智能本科专业开设

自2023年秋起,这门课程为人工智能本科专业首次开设。今年是课程开设第3年。

选课学生名单

2021317220328*袁新娜
2022317220409*刘勇
2022317220611*左弘泽
2021317220404韩林玉
2021317220619王钰
2023307210412谢新宇
2023317220103储启启
2023317220107朱锦铭
2023317220113李乐童
2023317220118王彪
2023317220125黄晓悦
2023317220128周晓慧
2023317220212王振华
2023317220215张楠
2023317220226孙哲妍
2023317220229许可凡
2023317220301李荣臻
2023317220303张瑛豪
2023317220405沈浩
2023317220416顾昊
2023317220420李若冰
2023317220421邵诗怡
2023317220503陈浩
2023317220516刘畅
2023317220609陈思远
2023317220704费翔
2023317220719彭思瑞
2023317220724刘颖霖
2021317220213石富豪
2022317220503容温礼
2023306220306郭炼
2023307220402黄泰
2023317220115廖俊泰
2023317220220蒋志恩
2023317220309刘博
2023317220314杨竣森
2023317220322陕雯渊
2023317220324严云佳
2023317220325高雨平
2023317220404陈佳伸
2023317220415冉乾坤
2023317220507严浩泽
2023317220514陈俊豪
2023317220519李泽坤
2023317220522王紫烜
2023317220605龚毅
2023317220606汪奇
2023317220610彭传钰
2023317220612游自豪
2023317220702任佳鹏
2023317220705阮怀明
2023317220727陈乐萦
2023317220728杨雯


More about matrix!

欢迎选课


为什么要选这门课程?

本课程讲述矩阵代数中的一些基本问题和方法,通过课程学习,讲述空间、变换、范数、矩阵分析等近现代数学元素对象和相关理论方法。借由课程学习,助学生理解代数语言下对算法模型的一般性刻画,初步了解矩阵代数在最优化、数据挖掘、机器学习等领域的应用结合,为人工智能专业高年级同学后续从事科学研究和工程实践打好理论基础。


Discover The Syllabuse

发现课程


一、日程安排

日期内容 (§x.x.x为西北工业大学《矩阵论》对应章节编号 )
25, Nov▩ Ch1.《线性空间与线性变换》
— — 集合与映射 (§1.1.1 )
— — 线性空间及其性质 (§1.1.2)
28, Nov▩ Ch1.《线性空间与线性变换》
— — 线性空间的基与坐标 (§1.1.3)
— — 专题1《从极大无关组,到基础解系,到空间的基向量》
2, Dec▩ Ch1.《线性空间与线性变换》
— — 基变换与坐标变换 (§1.1.4)
5, Dec▩ Ch1.《线性空间与线性变换》
— — 线性子空间 (§1.1.5)
— — 子空间的交与和 (§1.1.6)
9, Dec▩ Ch1.《线性空间与线性变换》
— — 线性变换及其运算 (§1.2.1)
12, Dec▩ Ch1.《线性空间与线性变换》
— — 线性变换的矩阵表示 (§1.2.2)
— — 专题2《从R^n到一般线性空间,从矩阵A到变换A
——“Rn之于一般线性空间,基之于空间,矩阵之于变换。”
16, Dec▩ Ch1.《线性空间与线性变换》
— — 特征值与特征向量 (§1.2.3)
19, Dec▩ Ch2. 《范数理论及其应用》
— — 向量范数的概念及Lp范数,向量序列 (§2.1.1)
— — 专题3《神经网络中的Gradient计算》
——“Rn空间的Norm-ball,数列到向量序列的收敛定义一般化,Norm对逼近的刻划。”
23, Dec▩ Ch2. 《范数理论及其应用》
— — 线性空间Rn上的向量范数的等价性 (§2.1.2)
— — 矩阵范数的定义与性质 (§2.2.1)
26, Dec▩ Ch2. 《范数理论及其应用》
— — 几种常见的矩阵范数 (§2.2.2)
— — 专题4《优化问题中的范数正则项》
——“用代数语言刻画模型,正则项的范数选取,优化问题的约束条件。“
30, Dec▩ Ch3. 《矩阵分析及其应用》
— — 矩阵序列 (§3.1)
2, Jan▩ Ch3. 《矩阵分析及其应用》
— — 矩阵级数 (§3.2)
— — 矩阵函数 (§3.3.1)
6, Jan▩ Ch3. 《矩阵分析及其应用》
— — 矩阵的微分与积分 (§3.4 )
— — 专题4优化问题中的范数正则项
9, Jan▩ Ch4. 《矩阵分解》
— — 矩阵的三角(LU)分解 (§4.1)
— — 矩阵的QR(正交三角)变换 (§4.2)
13, Jan▩ Ch4. 《矩阵分解》
— — 矩阵的正交对角分解与奇异值分解 (§4.4)
— — 专题5《矩阵分解的应用》
16, Jan▩ 学期总结

二、课程考核

  1. 平时 50%
  2. 期末考试 50%

三、课程讨论进程

 线代考研习题

 空间的基

 子空间

 生成子空间的基与维数

 线性变换的定义

 线性变换的矩阵

 特征值与特征向量

 线性空间与变换习题讲解





四、推荐文献-课外阅读

☁ 1. 扩展阅读——矩阵函数在建模中的典型应用——以一篇因果推断论文为例。(矩阵函数用以统计通路数量——请联系《离散数学》图论部分相关结论)

Zheng, Xun, et al. “DAGs with no tears: Continuous optimization for structure learning.” Advances in neural information processing systems 31 (2018). (Link)


☁ 2. 扩展阅读——矩阵分解论文。Daniel D. Lee & H. Sebastian Seung (1999). “Learning the parts of objects by non-negative matrix factorization”. Nature. 401 (6755): 788–791. (Link)


五、课外资源

☁ 1. 《线性代数和线性空间》李永乐,考研数学讲解视频。

  • 视频一,1h10m Link
  • 视频二,1h08m Link

六、历年课程

☁ 《矩阵论》2024年秋

☁ 《矩阵论》2023年秋




课后答疑

办公室: 一综B417


Course for BioNLP

学科交叉,融会贯通,学好BioNLP.

Course Hours

See jw.hzau.edu.cn

Office

C610, Yifu bldg

Contact me

xiajingbo.math@gmail.com