
X
X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X

GBM2�` _2;`2bbBQM
线性回归和正则项

CBM;#Q sB�

>m�x?QM; �;`B+mHim`�H lMBp2`bBiv

tB�DBM;#QXK�i?!;K�BHX+QK

kyk8@RR@ke

CBM;#Q sB� U>w�lV a2KBM�` J�i2`B�H kyk8@RR@ke R f ee

X
X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X

h�#H2 Q7 +QMi2Mib A

R GBM2�` _2;`2bbBQM rBi? G2�bi a[m�`2 （最小二乘线性回归） 9
最小二乘线性回归的建模和求解 8
“房价预测”案例 ky
算法总结和思考 k3
:`�/B2Mi .2b+2Mi！当上述方法失效的时候 j9

k 增添了正则项后的 GBM2�` _2;`2bbBQM 变种ě _B/;2 �M/ G�aaP 9y
_B/;2 `2;`2bbBQMf岭回归——多出的一个正则项 9R
欧几里得范数 UGk 范数V 98
G�aaP 回归——挑选向量范数 GR，更换正则项 9N
GR 范数（曼哈顿距离） 8k

j G�aaP _2;`2bbBQM 和 Svi?QM 代码示例 8e

9 一般情形下的线性模型，从回归到分类 eR
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GBM2�` _2;`2bbBQM

线性回归是一个经典的回归学习算法，有利于理解 GQbb 函数和正则项的作用，这其中需要适量的矩
阵微分的基础。同时，也需要针对 v = r⃗ht⃗ + #获得一个高维空间的理解。
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最小二乘线性回归的建模和求解

观测值集合 P#b, &⃗tB, vB'X
h?2`2 �`2 M T@/2K2MbBQM�H b�KTH2 /�i� tB- �M/ i?2B` `2;`2bbBQM p�Hm2b �`2 vB ∈ R- ?2`2-
t⃗B = (tB1, · · · , tBT)h- B = 1, 2, · · · ,MX
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h?2 ;Q�H Q7 i?2 HBM2�` `2;`2bbBQM KQ/2H Bb iQ /2i2`KBM2 � `2;`2bbBQM 7mM+iBQM 7(⃗t, r⃗) = r⃗ht⃗ bm+?
i?�i i?2 T`2/B+i2/ p�Hm2b ṽB = 7(⃗tB, r⃗) �TT`QtBK�i2 i?2 Q#b2`p2/ p�Hm2b vB,

vB ≈ ṽB = 7(⃗tB, r⃗) =
T∑

D=1

rDtBD = r⃗ht⃗B

r?2`2,
r⃗ = (r1, . . . ,rT)h ∈ RT Bb i?2 r2B;?i p2+iQ` UQ` T�`�K2i2` p2+iQ`VX
t⃗B = (tB1, . . . , tBT)h ∈ RT Bb i?2 72�im`2 p2+iQ` 7Q` i?2 B@i? Q#b2`p�iBQMX �

�该公式实际是一个简洁表示，完整表述应为：7(⃗tB, r⃗, #) =
∑T

D=1 rDtBD + # = r⃗ht⃗B + #.
我们重写公式为：7(⃗tB, r⃗, #) := 7̂(ˆ⃗tB, ˆ⃗r).

此处我们使用 ˆ⃗tB 和 ˆ⃗r 作为辅助记号：ˆ⃗tB = (⃗th
B , 1)h = (tB1, . . . , tBT, 1)h- ˆ⃗r = (r⃗h, #)h = (r1, . . . ,rT, #)hX

不失一般性，我们在后面使用简洁的公式表示。
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最小二乘线性回归的建模和求解

h?2 b[m�`2 bmK Q7 2``Q` i2`Kb rBHH #2 i?2 KBMBKmK ;Q�HX

J (r⃗) = 1

M

M∑

B=1

(vB − 7(⃗tB, r⃗))2 URV

很多时候，上述损失函数被称为“均方误差”（J2�M a[m�`2/ 1``Q`- Ja1）。
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最小二乘线性回归的建模和求解

均方误差（Ja1）损失函数的特性分析

均方误差（J2�M a[m�`2/ 1``Q`- Ja1）是回归任务中最常用的损失函数之一，其标准定义为：

JJa1(r⃗) =
1

M

M∑

B=1

(vB − 7(⃗tB, r⃗))2

其中，M 为样本数量，vB 为第 B 个样本的真实值，7(⃗tB, r⃗) 为模型在参数 r⃗ 下对输入 t⃗B 的预测值。
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最小二乘线性回归的建模和求解

Ja1 的优点

Ja1 具有以下显著优点，使其在众多场景中成为首选：
R 处处可导性：Ja1 函数在其定义域内处处连续可微，这一光滑特性使其能够与基于梯度的优化
算法（如随机梯度下降）完美协同，便于求解最优模型参数。

k 对大误差的强惩罚：其损失计算中的平方项 (vB − v̂B)2 使得预测值与真实值之间的较大偏差会被
指数级放大。这一特性驱使模型在训练过程中优先修正严重的预测错误，有利于快速降低整体
误差水平。

j 凸函数性：当模型 7(⃗t, r⃗) 为参数的线性函数时，Ja1 损失函数是关于参数 r⃗ 的凸函数。凸性
保证了优化过程能够收敛至全局最优解，避免了陷入局部极值点的问题，为参数估计提供了理
论上的可靠性。
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最小二乘线性回归的建模和求解

Ja1 的局限与缺点

尽管优势突出，Ja1 也存在固有的局限性，在使用时需审慎考虑：
R 对异常值高度敏感：平方项的放大效应是一把“双刃剑”。当数据中存在异常值（PmiHB2`b）时，
其所产生的巨大误差会被平方操作进一步放大，导致损失函数值被少数异常样本所主导。这可
能会使模型参数为拟合这些异常点而发生严重偏离，从而损害模型在正常数据上的泛化性能。

k 损失量纲问题：由于对误差进行了平方运算，Ja1 损失值的量纲变为原目标变量量纲的平方。
这为损失值的直观理解和不同量纲数据集间的横向比较带来了不便。有时会采用其平方根形式
（_Ja1）以恢复量纲的一致性。
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与其他回归损失函数的对比
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表 R, 常见回归损失函数对比

损失函数名称 数学表达式（简写） 核心特性与适用场景

均方误差（Ja1） 1

M
∑

(v − v̂)2 对大误差惩罚严厉，收敛快，但
对异常值敏感。适用于噪声较小、
异常值少的回归问题。

平均绝对误差（J�1） 1

M
∑

|v − v̂| 对误差进行线性惩罚，对异常值
的鲁棒性更强，但在零点不可导，
优化相对平缓。

>m#2` GQbb
{

1
2 (v − v̂)2, 若|v − v̂| ≤ δ

δ|v − v̂|− 1
2δ

2, 其他
Ja1 与 J�1 的折衷，在误差较
小时为二次，较大时为线性，兼
具光滑性与鲁棒性。
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综上所述，Ja1 因其良好的数学性质和优化特性成为回归分析的基石。然而，在实际应用中，需根
据数据的具体情况（如是否存在显著异常值）审慎选择损失函数，或考虑采用如 >m#2` 损失等更鲁
棒的替代方案，以在优化效率与模型稳健性之间取得平衡。
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最小二乘线性回归的建模和求解

J2�M a[m�`2/ 1``Q` UJa1V Bb i?2 KBMBKmK ;Q�HX

J (r⃗) = 1

M

M∑

B=1

(vB − 7(⃗tB, r⃗))2 UkV

那么线性回归的优化目标就是寻找最佳的参数 r⃗∗- 使得

r⃗∗ = �`; KBM
r⃗∈RT

J (r⃗)
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J2�M a[m�`2/ 1``Q` UJa1V Bb i?2 KBMBKmK ;Q�HX

J (r⃗) = 1

M

M∑

B=1

(vB − 7(⃗tB, r⃗))2 UjV

一个命题：

J (r⃗) = 1

M

M∑

B=1

(vB − 7(⃗tB, r⃗))2 =
1

M (⃗v − sr⃗)h(⃗v − sr⃗)

q?2`2 s = (⃗t1, . . . , t⃗M)h ∈ RM×T Bb i?2 /2bB;M K�i`Bt 7Q` i?2 b�KTH2 /�i�X
v⃗ = (v1, . . . , vM)h ∈ RM Bb i?2 Q#b2`p2/ `2;`2bbBQM p�Hm2 p2+iQ`X
r⃗ ∈ RT Bb i?2 T�`�K2i2` p2+iQ` r2 �BK iQ QTiBKBx2X
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实际上，Ja1 可以另写成：

J (r⃗) = 1

M

M∑

B=1

(vB − 7(⃗tB, r⃗))2 =
1

M (⃗v − sr⃗)h(⃗v − sr⃗) := 1

M ∥⃗v − sr⃗∥22

?2`2 || · ||2 Bb � H2 MQ`KX �

�此处请留意向量范数 H2被用以表示目标优化函数。当然，这仅仅只是一个记号上的使用而已。

CBM;#Q sB� U>w�lV a2KBM�` J�i2`B�H kyk8@RR@ke Re f ee

X
X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X

GBM2�` _2;`2bbBQM rBi? G2�bi a[m�`2 sAAA
最小二乘线性回归的建模和求解

SH2�b2 MQiB+2 i?�i i?2`2 Bb �M 2tTHB+Bi bQHmiBQM iQ i?Bb T`Q#H2K B7 shs Bb �M BMp2`iB#H2 K�i`BtR- b�v,

r⃗∗ = (shs)−1shv⃗. U9V

(�bbB;MK2Mi) S`Qp2 7Q`KmH� U9VX

R:`�/B2Mi �M�HvbBb rQmH/ bQHp2 i?Bb T`Q#H2K /B`2+iHv- �M/ AǶ/ HBF2 iQ K�F2 Bi �M �bbB;MK2MiX
CBM;#Q sB� U>w�lV a2KBM�` J�i2`B�H kyk8@RR@ke Rd f ee
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(�Mbr2` b?22i),
hQ }M/ i?2 QTiBK�H T�`�K2i2`b- r2 b2i i?2 ;`�/B2Mi Q7 i?2 +Qbi 7mM+iBQM J (r⃗) rBi? `2bT2+i iQ r⃗ iQ x2`Q,

0 = ∂J (r⃗)
∂r⃗

=
∂( 1

M (⃗v−sr⃗)h (⃗v−sr⃗))
∂r⃗

= 1
M

∂((⃗vh−r⃗hsh)(⃗v−sr⃗))
∂r⃗

= 1
M

∂(⃗vhv⃗−v⃗hsr⃗−r⃗hshv⃗+r⃗hshsr⃗)
∂r⃗

=?

U8V
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最小二乘线性回归

(�Mbr2` b?22i),
hQ }M/ i?2 QTiBK�H T�`�K2i2`b- r2 b2i i?2 ;`�/B2Mi Q7 i?2 +Qbi 7mM+iBQM J (r⃗) rBi? `2bT2+i iQ r⃗ iQ x2`Q,

0 = ∂J (r⃗)
∂r⃗

=
∂( 1

M (⃗v−sr⃗)h (⃗v−sr⃗))
∂r⃗

= 1
M

∂((⃗vh−r⃗hsh)(⃗v−sr⃗))
∂r⃗

= 1
M

∂(⃗vhv⃗−v⃗hsr⃗−r⃗hshv⃗+r⃗hshsr⃗)
∂r⃗

= 1
M (0− shv⃗ − shv⃗ + 2shsr⃗)

= 2
M (−shv⃗ + shsr⃗)

UeV

G2i i?2 ;`�/B2Mi 2[m�H iQ x2`Q- r2 ?�p2

r̂ = (shs)−1shv⃗. UdV

CBM;#Q sB� U>w�lV a2KBM�` J�i2`B�H kyk8@RR@ke RN f ee



X
X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X

R GBM2�` _2;`2bbBQM rBi? G2�bi a[m�`2 （最小二乘线性回归） 9
最小二乘线性回归的建模和求解 8
“房价预测”案例 ky
算法总结和思考 k3
:`�/B2Mi .2b+2Mi！当上述方法失效的时候 j9

k 增添了正则项后的 GBM2�` _2;`2bbBQM 变种ě _B/;2 �M/ G�aaP 9y

j G�aaP _2;`2bbBQM 和 Svi?QM 代码示例 8e

9 一般情形下的线性模型，从回归到分类 eR
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“房价预测”案例

“房价预测”案例。在这个案例中，M = 4（9 套房子的数据），T = 2（特征为：面积、到地铁站的距
离）。
RX 原始数据 UP#bV
假设我们收集了 9 套公寓的数据：& t⃗B, vB '- B = 1, 2, 3, 4
样本 R, 面积 8yK2- 距离 RFK → 售价 kyy 万
样本 k, 面积 eyK2- 距离 kFK → 售价 kjy 万
样本 j, 面积 3yK2- 距离 RFK → 售价 jRy 万
样本 9, 面积 NyK2- 距离 8FK → 售价 jyy 万
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“房价预测”案例

“房价预测”案例。在这个案例中，M = 4（9 套房子的数据），T = 2（特征为：面积、到地铁站的距
离）。
RX 原始数据 UP#bV
假设我们收集了 9 套公寓的数据：& t⃗B, vB '- B = 1, 2, 3, 4
样本 R, 面积 8yK2- 距离 RFK → 售价 kyy 万
样本 k, 面积 eyK2- 距离 kFK → 售价 kjy 万
样本 j, 面积 3yK2- 距离 RFK → 售价 jRy 万
样本 9, 面积 NyK2- 距离 8FK → 售价 jyy 万
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“房价预测”案例

kX 构建矩阵与向量
我们将数据转化为矩阵 s 和向量 v⃗ 形式：

s =

⎛

⎜⎜⎝

50 1
60 2
80 1
90 5

⎞

⎟⎟⎠ , v⃗ =

⎛

⎜⎜⎝

200
230
310
300

⎞

⎟⎟⎠

其中 r⃗ = (r�`2�,r/Bbi)h 是我们要学习的回归函数 7(⃗t, r⃗) = r⃗ht⃗ 的权重。
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“房价预测”案例

jX 计算步骤
第一步：计算 shs U信息聚合V
这是一个 2× 2 的矩阵，代表了特征之间的协方差关系：

shs =

(
50 60 80 90
1 2 1 5

)
⎛

⎜⎜⎝

50 1
60 2
80 1
90 5

⎞

⎟⎟⎠ =

(
20600 700
700 31

)

第二步：计算 shv⃗ U目标投影V

shv⃗ =

(
50 60 80 90
1 2 1 5

)
⎛

⎜⎜⎝

200
230
310
300

⎞

⎟⎟⎠ =

(
75600
2470

)
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“房价预测”案例

第三步：求解 r⃗∗ = (shs)−1shv⃗
通过计算逆矩阵（或使用高斯消元法），我们可以得到：

(
r∗

�`2�
r∗

/Bbi

)
≈

(
4.12

−13.35

)

所以，最终的回归函数为

7(⃗t, r⃗∗) = r⃗∗ht⃗ = r∗
�`2�t1 + r∗

/Bbit2.
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“房价预测”案例

9X 结果的物理意义 US?vbB+�H AMi2`T`2i�iBQMV
通过这个具体的计算，有如下观察结果：
r∗

�`2� ≈ 4.12, 意味着面积每增加 1K2，房价平均上涨约 9XRk 万。
r∗

/Bbi ≈ −13.35, 意味着距离地铁每增加 RFK，房价平均下降约 RjXj8 万（负相关）。

CBM;#Q sB� U>w�lV a2KBM�` J�i2`B�H kyk8@RR@ke k8 f ee

X
X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X

GBM2�` _2;`2bbBQM rBi? G2�bi a[m�`2 oAA
“房价预测”案例

另外，残差向量, 2⃗ = v⃗ − sr⃗∗。
检查结果，发现 2⃗ 并不为零，这说明模型无法完美拟合所有点，但这是在 G2 意义下的最优折中方
案。
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最小二乘线性回归的建模和求解 8
“房价预测”案例 ky
算法总结和思考 k3
:`�/B2Mi .2b+2Mi！当上述方法失效的时候 j9

k 增添了正则项后的 GBM2�` _2;`2bbBQM 变种ě _B/;2 �M/ G�aaP 9y

j G�aaP _2;`2bbBQM 和 Svi?QM 代码示例 8e

9 一般情形下的线性模型，从回归到分类 eR
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算法总结和思考

关于这个结果的几个总结和思考：
首先，r⃗∗ = (shs)−1shv⃗是一个显示解，该模型的求解过程中适度使用了一些矩阵微分
的技巧。
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算法总结和思考

关于这个结果的几个注解：
首先，r⃗∗ = (shs)−1shv⃗是一个显示解，该模型的求解过程中适度使用了一些矩阵微分
的技巧。
其次，这个模型及其求解所对应的“机器学习”思想在哪里？
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算法总结和思考

关于这个结果的几个注解：
首先，r⃗∗ = (shs)−1shv⃗是一个显示解，该模型的求解过程中适度使用了一些矩阵微分
的技巧。
其次，这个模型及其求解所对应的“机器学习”思想在哪里？
但是，这个解并不完美。为什么？iBTb, B7 T > MXXX
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算法总结和思考

关于这个结果的几个注解：
首先，r⃗∗ = (shs)−1shv⃗是一个显示解，该模型的求解过程中适度使用了一些矩阵微分
的技巧。
其次，这个模型及其求解所对应的“机器学习”思想在哪里？
但是，这个解并不完美。为什么？iBTb, B7 T > MXXX
一个细节：针对 J (r)的梯度下降是如何进行的，公式是？
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算法总结和思考

算法竞赛和更多的思考

E�;;H2 竞赛，"QbiQM 房价预测 � #X

�?iiTb,ffrrrXF�;;H2X+QKf+f?Qmb2@T`B+2b@�/p�M+2/@`2;`2bbBQM@i2+?MB[m2b
#百度搜索。

CBM;#Q sB� U>w�lV a2KBM�` J�i2`B�H kyk8@RR@ke jR f ee



X
X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X

GBM2�` _2;`2bbBQM rBi? G2�bi a[m�`2 oA
算法总结和思考

算法比拼，考虑：
运算结果在测试集上的准确性以及可迁移性（鲁棒性），
时间复杂度和算法效率 U寻优效率V，
结果的深层分析（可解释性）X
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最小二乘线性回归的建模和求解 8
“房价预测”案例 ky
算法总结和思考 k3
:`�/B2Mi .2b+2Mi！当上述方法失效的时候 j9

k 增添了正则项后的 GBM2�` _2;`2bbBQM 变种ě _B/;2 �M/ G�aaP 9y

j G�aaP _2;`2bbBQM 和 Svi?QM 代码示例 8e

9 一般情形下的线性模型，从回归到分类 eR
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:`�/B2Mi .2b+2Mi！当上述方法失效的时候

:`�/B2Mi /2b+2Mi U�F�X- bi22T2bi /2b+2MiV Bb 7Q` KBMBKBxBM; KmHiB/BK2MbBQM�H bKQQi? +QMp2t Q#D2+iBp2
7mM+iBQMb Q7 i?2 7Q`K J : RT → RX

定理 U:`�/B2Mi .2b+2MiV
R, AMTmi, AMBiB�H TQBMi r⃗0- ;`�/B2Mi MQ`K iQH2`�M+2 ε
k, a2i i = 0
j, r?BH2 ∥∇J (r⃗i)∥ ≥ ε /Q
9, r⃗i+1 = r⃗i − ηi∇J (r⃗i)
8, i = i + 1
e, 2M/ r?BH2
d, _2im`M, r⃗i

这里最关键的迭代步骤是：
r⃗i+1 = r⃗i − ηi∇J (r⃗i) U3V
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:`�/B2Mi .2b+2Mi！当上述方法失效的时候
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:`�/B2Mi .2b+2Mi！当上述方法失效的时候

问：当 r⃗∗ = (shs)−1shv⃗ 无法计算，具体该如何使用梯度下降？
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:`�/B2Mi .2b+2Mi！当上述方法失效的时候

问：在使用 SviQ`+? 编写神经网络的时候，哪些部分是与梯度下降有关？
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:`�/B2Mi .2b+2Mi！当上述方法失效的时候

问：在使用 SviQ`+? 编写神经网络的时候，哪些部分是与梯度下降有关？
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:`�/B2Mi .2b+2Mi！当上述方法失效的时候

问：在使用 SviQ`+? 编写神经网络的时候，哪些部分是与梯度下降有关？
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R GBM2�` _2;`2bbBQM rBi? G2�bi a[m�`2 （最小二乘线性回归） 9
最小二乘线性回归的建模和求解 8
“房价预测”案例 ky
算法总结和思考 k3
:`�/B2Mi .2b+2Mi！当上述方法失效的时候 j9

k 增添了正则项后的 GBM2�` _2;`2bbBQM 变种ě _B/;2 �M/ G�aaP 9y
_B/;2 `2;`2bbBQMf岭回归——多出的一个正则项 9R
欧几里得范数 UGk 范数V 98
G�aaP 回归——挑选向量范数 GR，更换正则项 9N
GR 范数（曼哈顿距离） 8k

j G�aaP _2;`2bbBQM 和 Svi?QM 代码示例 8e

9 一般情形下的线性模型，从回归到分类 eR
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R GBM2�` _2;`2bbBQM rBi? G2�bi a[m�`2 （最小二乘线性回归） 9

k 增添了正则项后的 GBM2�` _2;`2bbBQM 变种ě _B/;2 �M/ G�aaP 9y
_B/;2 `2;`2bbBQMf岭回归——多出的一个正则项 9R
欧几里得范数 UGk 范数V 98
G�aaP 回归——挑选向量范数 GR，更换正则项 9N
GR 范数（曼哈顿距离） 8k

j G�aaP _2;`2bbBQM 和 Svi?QM 代码示例 8e

9 一般情形下的线性模型，从回归到分类 eR
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增添了正则项后的 GBM2�` _2;`2bbBQM 变种ě _B/;2 �M/ G�aaP A
_B/;2 `2;`2bbBQMf岭回归——多出的一个正则项

回忆最小二乘线性回归的目标函数

h?2 b[m�`2 bmK Q7 2``Q` i2`Kb Bb i?2 KBMBKmK ;Q�HX

J (r⃗) = 1

M

M∑

B=1

(vB − 7(⃗tB, r⃗))2 UNV
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增添了正则项后的 GBM2�` _2;`2bbBQM 变种ě _B/;2 �M/ G�aaP AA
_B/;2 `2;`2bbBQMf岭回归——多出的一个正则项

回忆最小二乘线性回归的目标函数

h?2 b[m�`2 bmK Q7 2``Q` i2`Kb Bb i?2 KBMBKmK ;Q�HX

J (r⃗) = 1

M

M∑

B=1

(vB − 7(⃗tB, r⃗))2 URyV

考虑最小二乘线性回归的变种，`B/;2 `2;`2bbBQMf岭回归- 它引入一个G2 `2;mH�`Bx2` U正则项V,

J_B/;2(r⃗) =
1

M

M∑

B=1

(vB − 7(⃗tB, r⃗))2 + λ||r⃗||22. URRV
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增添了正则项后的 GBM2�` _2;`2bbBQM 变种ě _B/;2 �M/ G�aaP AAA
_B/;2 `2;`2bbBQMf岭回归——多出的一个正则项

几个问题：

增添了正则项后，对比最小二乘下的线性回归 r估计结论，对这个结论的影响在哪里？

对 J (r)的梯度下降的训练影响在哪里？
这是可以通过列式求解获知的。请尝试。
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增添了正则项后的 GBM2�` _2;`2bbBQM 变种ě _B/;2 �M/ G�aaP Ao
_B/;2 `2;`2bbBQMf岭回归——多出的一个正则项

考虑最小二乘线性回归的变种，`B/;2 `2;`2bbBQMf岭回归- 它引入一个G2 `2;mH�`Bx2` U正则项V,

J_B/;2(r⃗) =
1

M

M∑

B=1

(vB − 7(⃗tB, r⃗))2 + λ||r⃗||22. ě_B/;2 `2;`2bbBQMX URkV

� #

�凸规划的结论告诉我们，增加了正则项后，以上 GQbb 函数的最优化问题等同于

KBM
r⃗

1

M

M∑

B=1

(vB − 7(⃗tB, r⃗))2, b.i., ||r⃗||2 < *. URjV

此处 *与 G�;`�M;2 常数 λ有关X
#增加的正则项使得解搜索需要在 ||r⃗||2 < *取值范围的约束下进行X 这减小了可行解的搜索空间。
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R GBM2�` _2;`2bbBQM rBi? G2�bi a[m�`2 （最小二乘线性回归） 9

k 增添了正则项后的 GBM2�` _2;`2bbBQM 变种ě _B/;2 �M/ G�aaP 9y
_B/;2 `2;`2bbBQMf岭回归——多出的一个正则项 9R
欧几里得范数 UGk 范数V 98
G�aaP 回归——挑选向量范数 GR，更换正则项 9N
GR 范数（曼哈顿距离） 8k

j G�aaP _2;`2bbBQM 和 Svi?QM 代码示例 8e

9 一般情形下的线性模型，从回归到分类 eR
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增添了正则项后的 GBM2�` _2;`2bbBQM 变种ě _B/;2 �M/ G�aaP A
欧几里得范数 UGk 范数V

欧几里得范数 UGk 范数V 定义：

对于一个 T 维向量 r⃗ = (r1,r2, . . . ,rT)h ∈ RT，其欧几里得范数定义为：

∥r⃗∥2 =

√√√√
T∑

D=1

r2
D =

√
r2
1 + r2

2 + · · ·+ r2
T

使用矩阵表示法，它可以简洁地写作：

∥r⃗∥2 =
√

r⃗hr⃗
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增添了正则项后的 GBM2�` _2;`2bbBQM 变种ě _B/;2 �M/ G�aaP AA
欧几里得范数 UGk 范数V

核心特性与几何意义
几何长度：
在二维空间（T = 2）中，这正是勾股定理：如果向量是 r⃗ = (t, v)h，那么其长度就是

√
t2 + v2。
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增添了正则项后的 GBM2�` _2;`2bbBQM 变种ě _B/;2 �M/ G�aaP AAA
欧几里得范数 UGk 范数V

范数球 ULQ`K "�HHV：∥r⃗∥2 ≤ *：
在二维情况下，所有满足条件的点构成一个实心圆盘。
在三维情况下，所有满足条件的点构成一个实心球体。
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增添了正则项后的 GBM2�` _2;`2bbBQM 变种ě _B/;2 �M/ G�aaP Ao
欧几里得范数 UGk 范数V

在机器学习中的应用（岭回归）：
在线性回归中，我们经常加入这个范数的平方作为惩罚项，称为正则项（_2;mH�`Bx�iBQM）：

J_B/;2(r⃗) = J (r⃗) + λ∥r⃗∥22

这被称为 _B/;2 _2;`2bbBQM（岭回归）。它的作用是限制参数 r⃗ 的大小，防止模型为了拟合噪声而产
生过大的权重，从而缓解过拟合。同时能够收缩寻优空间。
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R GBM2�` _2;`2bbBQM rBi? G2�bi a[m�`2 （最小二乘线性回归） 9

k 增添了正则项后的 GBM2�` _2;`2bbBQM 变种ě _B/;2 �M/ G�aaP 9y
_B/;2 `2;`2bbBQMf岭回归——多出的一个正则项 9R
欧几里得范数 UGk 范数V 98
G�aaP 回归——挑选向量范数 GR，更换正则项 9N
GR 范数（曼哈顿距离） 8k

j G�aaP _2;`2bbBQM 和 Svi?QM 代码示例 8e

9 一般情形下的线性模型，从回归到分类 eR
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增添了正则项后的 GBM2�` _2;`2bbBQM 变种ě _B/;2 �M/ G�aaP A
G�aaP 回归——挑选向量范数 GR，更换正则项

Zm2biBQM

在很多问题求解的情况下，我们希望线性回归能获得一个包含很多 y 分量的
r，以达到“aT�`bBiv”。为什么会这样？

怎么理解一个具有 aT�`bBiv 特性的 r？例如在 6B;m`2 \\中？

——服务于可解释性。
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增添了正则项后的 GBM2�` _2;`2bbBQM 变种ě _B/;2 �M/ G�aaP AA
G�aaP 回归——挑选向量范数 GR，更换正则项

q?v /Q r2 HBF2 iQ ?�p2 bT�`bBiv BM r⃗\ >2`2 Bb �M 2t�KTH2,

�bbQ+B�i2 ;2MQivT2b iQ � ;Bp2M T?2MQivT2X _27 ǴG�aaP, SQr2`7mH L2r h2+?MB[m2 h?�i Ƕ_QT2b
AMǶ h?Qmb�M/b Q7 :2M2b �i PM+2Ǵ �X

�?iiTb,ffrrrX#BQi2+MBF�XQ`;fkyRdfydf
H�bbQ@TQr2`7mH@M2r@i2+?MB[m2@i?�i@`QT2b@BM@i?Qmb�M/b@Q7@;2M2b@�i@QM+2f
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增添了正则项后的 GBM2�` _2;`2bbBQM 变种ě _B/;2 �M/ G�aaP AAA
G�aaP 回归——挑选向量范数 GR，更换正则项

G�aaP, G2�bi �#bQHmi2 b?`BMF�;2 �M/ b2H2+iBQM QT2`�iQ`X
利用 G1范数，我们获得 G�bbQ _2;`2bbBQM 的目标函数。

JG�bbQ(r⃗) = J(r⃗) + λ||r⃗||21. UR9V

� # +

�1[mBp�H2MiHv- 7`QK � pB2r Q7 +QMp2t QTiBKBx�iBQM- i?2 KBMBKBx�iBQM Q7 i?2 �#Qp2 HQbb 7mM+iBQM bm{+2b iQ,

KBM
r

1

M
||v − sr||22, b.i., ||r||1 < *. UR8V

>2`2- * Bb � +QMbi�Mi- `2H�i2/ iQ λX
#请对照 _B/;2 回归，G�aaP 的唯一区别在于正则项中的范数选择。不同的范数选择，为什么会带来 r的

aT�`bBiv 呢？
+实际上，G0范数会带来更加直接的特征约减。选用 G1的原因是为了计算的可能性。
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R GBM2�` _2;`2bbBQM rBi? G2�bi a[m�`2 （最小二乘线性回归） 9

k 增添了正则项后的 GBM2�` _2;`2bbBQM 变种ě _B/;2 �M/ G�aaP 9y
_B/;2 `2;`2bbBQMf岭回归——多出的一个正则项 9R
欧几里得范数 UGk 范数V 98
G�aaP 回归——挑选向量范数 GR，更换正则项 9N
GR 范数（曼哈顿距离） 8k

j G�aaP _2;`2bbBQM 和 Svi?QM 代码示例 8e

9 一般情形下的线性模型，从回归到分类 eR
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增添了正则项后的 GBM2�` _2;`2bbBQM 变种ě _B/;2 �M/ G�aaP A
GR 范数（曼哈顿距离）

G1 范数（G1 LQ`K），也称为曼哈顿距离（J�M?�ii�M .Bbi�M+2）。它与之前讨论的 G2 范数在几何形
状和物理特性上有显著区别。

G1 范数的数学定义：
对于一个 T 维向量 r⃗ = (r1,r2, . . . ,rT)h ∈ RT，其 G1 范数定义为向量各分量绝对值之和：

∥r⃗∥1 =
T∑

D=1

|rD| = |r1|+ |r2|+ · · ·+ |rT|
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增添了正则项后的 GBM2�` _2;`2bbBQM 变种ě _B/;2 �M/ G�aaP AA
GR 范数（曼哈顿距离）

G1 范数的关键特性,
RX 几何形状：菱形与正八面体
G1 范数球 ∥r⃗∥1 ≤ * 的边界在不同维度下呈现出“尖锐”的特征：
二维 UT = 2V：是一个旋转了 98 度的正方形（菱形）。其顶点位于坐标轴上，例如
(*, 0), (0,*), (−*, 0), (0,−*)。
三维 UT = 3V：是一个正八面体（_2;mH�` P+i�?2/`QM）。
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增添了正则项后的 GBM2�` _2;`2bbBQM 变种ě _B/;2 �M/ G�aaP AAA
GR 范数（曼哈顿距离）

kX 稀疏性 UaT�`bBivV ——这是 G1 范数在机器学习中被广泛应用的核心原因。
直观：由于 G1 范球的“角”正好位于坐标轴上，寻优过程中，等高线往往最先接触到这些“角”。
结果：最优解 r⃗∗ 中许多分量为 0。常被用作特征选择，从大量特征中筛选重要部分。
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增添了正则项后的 GBM2�` _2;`2bbBQM 变种ě _B/;2 �M/ G�aaP Ao
GR 范数（曼哈顿距离）

jX 稳健性 U_Q#mbiM2bbV
相比于 G2 范数对误差进行平方（这会极大地放大离群点fPmiHB2`b 的影响），G1 范数对异常值不那么
敏感，因此在处理含有噪声或离群点的数据时更加稳健。
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PmiHBM2

R GBM2�` _2;`2bbBQM rBi? G2�bi a[m�`2 （最小二乘线性回归） 9
最小二乘线性回归的建模和求解 8
“房价预测”案例 ky
算法总结和思考 k3
:`�/B2Mi .2b+2Mi！当上述方法失效的时候 j9

k 增添了正则项后的 GBM2�` _2;`2bbBQM 变种ě _B/;2 �M/ G�aaP 9y
_B/;2 `2;`2bbBQMf岭回归——多出的一个正则项 9R
欧几里得范数 UGk 范数V 98
G�aaP 回归——挑选向量范数 GR，更换正则项 9N
GR 范数（曼哈顿距离） 8k

j G�aaP _2;`2bbBQM 和 Svi?QM 代码示例 8e

9 一般情形下的线性模型，从回归到分类 eR
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G�aaP _2;`2bbBQM 和 Svi?QM 代码示例

示例代码来自知乎kX

例 U*QKK�M/ HBM2bV
=;Bi +HQM2 ?iiTb,ff;Bi?m#X+QKfSviG�#fJG"QtX;Bi

h?2 `�r /�i� �`2,

例 U_�r /�i� 7Q` `2;`2bbBQMV
R yX988 yXje8 yXyN8 yX8R9 yXkk98 yXRyR yXR8 R8
R yXj8 yXke8 yXyN yXkk88 yXyNN8 yXy938 yXyd d
@R yX8j yX9k yXRj8 yXedd yXk8e8 yXR9R8 yXkR N
R yX99 yXje8 yXRk8 yX8Re yXkR88 yXRR9 yXR88 Ry
y yXjj yXk88 yXy3 yXky8 yXy3N8 yXyjN8 yXy88 d
y yX9k8 yXj yXyN8 yXj8R8 yXR9R yXydd8 yXRk 3
@R yX8j yX9R8 yXR8 yXddd8 yXkjd yXR9R8 yXjj ky
XXX

k?iiTb,ffx?m�MH�MXx?B?mX+QKfTfjy8j8kky)
CBM;#Q sB� U>w�lV a2KBM�` J�i2`B�H kyk8@RR@ke 8e f ee
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G�aaP _2;`2bbBQM 和 Svi?QM 代码示例

r �TT`QtBK�i2 0- r?BH2 λ BM+`2�b2bX

例 U*QKK�M/ HBM2bV
H�K#/� 4 2�UyV- r 4 (( yXyRe9 @yXy9Rk yX9yee yXR88j RXRyde @RXk3k8 @yXkey8 yX93yk))
H�K#/� 4 2�URV- r 4 (( yXyReR @yXykN8 yXjN9R yXR88y RXyNy8 @RXkd9R @yXk89d yX939d))
H�K#/� 4 2�UkV- r 4 (( yXyR8j yX yXjeke yXR89k RXyjNR @RXk9N9 @yXkjd3 yX9N3d))
H�K#/� 4 2�UjV- r 4 (( yXyRjk8 yX yXj8y8 yXR8k3 yX338y @RXRdky @yXR39e yX8jNd))
H�K#/� 4 2�U9V- r 4 (( yXyyde yX yXjkyN yXR9Nd yXjd3k @yXNk39 @yXyR33 yXe3je))
H�K#/� 4 2�U8V- r 4 (( yX yX yXkekd yXR98j yX @yXeyR3 yX yXd39j))
H�K#/� 4 2�UeV- r 4 (( yX yX yXydee yXRkey yX @yXk88k yX yXejkk))
H�K#/� 4 2�UdV- r 4 (( yX yX yX yXyek3 yX yX yX yX999N))
H�K#/� 4 2�U3V- r 4 (( yX yX yX yX yX yX yX yXkdyd))
H�K#/� 4 2�UNV- r 4 (( yX yX yX yX yX yX yX yX))
H�K#/� 4 2�URyV- r 4 (( yX yX yX yX yX yX yX yX))
H�K#/� 4 2�URRV- r 4 (( yX yX yX yX yX yX yX yX))
H�K#/� 4 2�URkV- r 4 (( yX yX yX yX yX yX yX yX))
H�K#/� 4 2�URjV- r 4 (( yX yX yX yX yX yX yX yX))
H�K#/� 4 2�UR9V- r 4 (( yX yX yX yX yX yX yX yX))
H�K#/� 4 2�UR8V- r 4 (( yX yX yX yX yX yX yX yX))
H�K#/� 4 2�UReV- r 4 (( yX yX yX yX yX yX yX yX))
H�K#/� 4 2�URdV- r 4 (( yX yX yX yX yX yX yX yX))
H�K#/� 4 2�UR3V- r 4 (( yX yX yX yX yX yX yX yX))
H�K#/� 4 2�URNV- r 4 (( yX yX yX yX yX yX yX yX))

CBM;#Q sB� U>w�lV a2KBM�` J�i2`B�H kyk8@RR@ke 8d f ee
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G�aaP _2;`2bbBQM 和 Svi?QM 代码示例

G�aaP `2;`2bbBQM, rB �TT`QtBK�i2b x2`Q r?2M λ BM+`2�b2bX

CBM;#Q sB� U>w�lV a2KBM�` J�i2`B�H kyk8@RR@ke 83 f ee
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G�aaP _2;`2bbBQM 和 Svi?QM 代码示例

_B/;2 `2;`2bbBQM, rB /Q2bMǶi �TT`QtBK�i2b x2`Q p2`v [mB+FHv r?2M λ BM+`2�b2bX

CBM;#Q sB� U>w�lV a2KBM�` J�i2`B�H kyk8@RR@ke 8N f ee
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PmiHBM2

R GBM2�` _2;`2bbBQM rBi? G2�bi a[m�`2 （最小二乘线性回归） 9
最小二乘线性回归的建模和求解 8
“房价预测”案例 ky
算法总结和思考 k3
:`�/B2Mi .2b+2Mi！当上述方法失效的时候 j9

k 增添了正则项后的 GBM2�` _2;`2bbBQM 变种ě _B/;2 �M/ G�aaP 9y
_B/;2 `2;`2bbBQMf岭回归——多出的一个正则项 9R
欧几里得范数 UGk 范数V 98
G�aaP 回归——挑选向量范数 GR，更换正则项 9N
GR 范数（曼哈顿距离） 8k

j G�aaP _2;`2bbBQM 和 Svi?QM 代码示例 8e

9 一般情形下的线性模型，从回归到分类 eR
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一般情形下的线性模型，从回归到分类
GQ;@HBM2�` `2;`2bbBQM

q2Ƕp2 �H`2�/v FMQrM ?Qr iQ K�F2 `2;`2bbBQM #v mbBM; � HBM2�` `2;`2bbBQM KQ/2HX aQK2iBK2b- r2 rQmH/
HBF2 iQ ;2M2`�HBx2 i?2 HBM2�` `2;`2bbBQM KQ/2H �M/ K�F2 Bi �TT`QtBK�i2 � b2`B2b Q7 Q#b2`p�iBQMb rBi?
MQM@HBM2�` p�Hm2bX 6Q` 2t�KTH2-

HM v = r⃗ht⃗ + # UReV
Bb +�HH2/ ǴHQ;@HBM2�` `2;`2bbBQMǴX

CBM;#Q sB� U>w�lV a2KBM�` J�i2`B�H kyk8@RR@ke eR f ee
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一般情形下的线性模型，从回归到分类
:2M2`�HBx2/ HBM2�` KQ/2H

:2M2`�HHv- B7 r2 +QMbB/2` � KQMQiQMB+ /Bz2`2MiB�#H2 7mM+iBQM ;(·)-

v = ;−1(r⃗ht⃗ + #) URdV

Bb +�HH2/ Ǵ;2M2`�HBx2/ HBM2�` KQ/2HǴX h?2 7mMiBQM- ;(·) Bb +�HH2/ ǴHBMF 7mM+iBQMǴX

CBM;#Q sB� U>w�lV a2KBM�` J�i2`B�H kyk8@RR@ke ek f ee
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一般情形下的线性模型，从回归到分类
lMBi@bi2T 7mM+iBQM 7Q` +H�bbB}+�iBQM

*QMbB/2` � irQ@+H�bb +H�bbB}+�iBQM- �M/ i?2 H�#2H Bb v ∈ {0, 1}- �M/ i?2 QMHv �ii2KTi M22/2/ Bb iQ +QMp2`i
� `2�H MmK#2` x = r⃗ht⃗ + # iQ � #BM�`v p�Hm2 vX
h?2 B/2�H +?QB+2 Bb ǴmMBi@bi2T 7mM+iBQMǴ,

v =

⎧
⎨

⎩

0, x < 0;
0.5, x = 0;
1, x > 0.

UR3V

>Qr2p2` mMBi@bi2T 7mM+iBQM Bb MQi +QMiBMmQmbX aQ- ǴbB;KQB/Ǵ 7mM+iBQM `2TH�+2b BiX h?�iǶb GQ;BbiB+
`2;`2bbBQM KQ/2H 7Q` #BM�`v +H�bbB}+�iBQM5

CBM;#Q sB� U>w�lV a2KBM�` J�i2`B�H kyk8@RR@ke ej f ee
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一般情形下的线性模型，从回归到分类

更多的讨论，引向 GQ;BbiB+ 回归。
让我们转到下一章。

CBM;#Q sB� U>w�lV a2KBM�` J�i2`B�H kyk8@RR@ke e9 f ee
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�+FMQrH2/;2K2Mi

课堂知识点回顾！

CBM;#Q sB� U>w�lV a2KBM�` J�i2`B�H kyk8@RR@ke e8 f ee


