《PheSeq: 贝叶斯深度学习模型如何概念化基因与疾病关联,并将其与P值桥接?》

“This study introduces PheSeq, a Bayesian deep learning model designed to integrate p-value data from sequence analysis with phenotype descriptions from literature and network data. It improves the robustness and interpretability of gene-disease association studies.”  这项研究介绍了PheSeq,这是一种贝叶斯深度学习模型,旨在将序列分析中的P值数据与文献中的表型描述和网络数据结合起来。它提高了基因与疾病关联研究的稳健性和可解释性。 Behind the paper [1]: (https://genomemedicine.biomedcentral.com/articles/10.1186/s13073-024-01330-7) Highlights: The Bayesian deep learning framework successfully bridges the phenotype description perception and association significance (p-value) inContinueContinue reading “《PheSeq: 贝叶斯深度学习模型如何概念化基因与疾病关联,并将其与P值桥接?》”

《AGAC语料库的设计思路》——再读课题组二师姐经典工作

文章:《An Active Gene Annotation Corpus and Its Application on Anti-epilepsy Drug Discovery》https://ieeexplore.ieee.org/abstract/document/8983031作者:Yuxing Wang, Kaiyin Zhou, Jin-Dong Kim, Kevin Cohen, Mina Gachloo, Yuxin Ren, Shanghui Nie, Xuan Qin, Panzhong Lu, Jingbo Xia* 引用方式:Wang Y, Zhou K, Kim J D, et al. An active gene annotation corpus and its application on anti-epilepsy drug discovery[C]//2019 IEEE International ConferenceContinueContinue reading “《AGAC语料库的设计思路》——再读课题组二师姐经典工作”

《Cancer Alterome,文献资源如何有助于癌症病理学的精细化解释》

“This study introduces Cancer-Alterome, a literature-mined dataset that focuses on the regulatory events of an organism’s biological processes or clinical phenotypes caused by genetic alterations. It empowers investigation of cancer pathology, enabling tracking of relevant literature support.” “本研究介绍了Cancer-Alterome,这是一个通过文献挖掘得到的数据集,专注于研究生物体因遗传变异而导致的生物过程或临床表型的调控事件。它加强了癌症病理学的研究,并使得相关文献支持的追踪成为可能。” Behind the paper (https://www.nature.com/articles/s41597-024-03083-9): Cancer has long been a significant global health concern, posing a serious threatContinueContinue reading “《Cancer Alterome,文献资源如何有助于癌症病理学的精细化解释》”

连钰珑师姐参与的“舆情预测”研究论文被接收

连钰珑师姐参与的“舆情与价格波动预测”研究工作最近被Computers and Electrical Engineering接收。 该工作主要通过人工设计舆情语义语料库、捕捉舆情对环境/市场/政策的响应,指导预测舆情走向和价格涨跌影响、预测蔬菜价格异常波动。小连师姐在其中提供Granger因果检验的算法实施,取得积极成效。 恭喜所有作者! Youzhu Li, Jinyu Yao, Jingjing Song, Yixin Feng, Heng Dong, Jingliang Zhao, Yulong Lian, Feng Shi, Jingbo Xia*. Investigation of Causal Public Opinion Indexes for Price Fluctuation in Vegetable Marketing. Computers and Electrical Engineering. 2024.

DGGAT paper is indexed in IEEE

https://ieeexplore.ieee.org/abstract/document/10385796 Integrating Multi-omics Data into A Gated Graph Convolutional Networks for Identifying Cancer Driver Genes and Function Modules Publisher: IEEE Qianqian Peng; Zhihan He; Shichao Liu; Xinzhi Yao; Jingbo Xia Abstract: The identification of cancer driver genes is important for better understanding the hallmarks of cancer and developing precision therapies. Though the integration of multiomics and protein-protein interaction (PPI) dataContinueContinue reading “DGGAT paper is indexed in IEEE”